
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

A Local Pursuit Strategy for Bio-Inspired Optimal Control with
Partially-Constrained Final State

by Cheng Shao, Dimitrios Hristu-Varsakelis

TR 2005-76

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Local Pursuit Strategy for Bio-Inspired Optimal Control with
Partially-Constrained Final State

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army Research Office,PO Box 12211,Research Triangle Park,NC,27709

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ALocalPursuit Strategy forBio-InspiredOptimalControl

withPartially-ConstrainedFinal State �

Cheng Shao a, Dimitrios Hristu-Varsakelis a,∗
aDepartment of Mechanical Engineering and Institute for Systems Research

University of Maryland, College Park, MD 20742 USA

Abstract

Inspired by the process by which ants gradually optimize their foraging trails, this report investigates the cooperative solution
of a class of free-final time, partially-constrained final state optimal control problems by a group of dynamic systems. A class
of cooperative, pursuit-based algorithms are proposed for finding optimal solutions by iteratively optimizing an initial feasible
control. The proposed algorithms require only short-range, limited interactions between group members, avoid the need for
a “global map” of the environment on which the group evolves, and solve an optimal control problem in “small” pieces, in a
manner which will be made precise. The performance of the algorithms is illustrated in a series of simulations and laboratory
experiments.

Key words: Co-operative control, Optimization, Algorithms, Agents, Group work, Trajectories, Minimum-time control

1 Introduction

In recent years, problems in cooperative control are in-
creasingly capturing the attention of researchers, fueled
by the development of decentralized control systems
with cost and performance advantages. The rising in-
terest in deploying cooperative systems also stems from
their potential to perform tasks that are not feasible for
individuals. Examples include remote exploration and
information gathering by swarms of small autonomous
robots [1], and satellite arrays, to name a few. Members
of such “engineered collectives” usually have – just like
their natural counterparts – limited sensing, communi-
cation and computing capabilities. This suggests that
each member can only perform relatively simple tasks.
However, individual limitations can often be overcome
by cooperation, if one can identify an effective way
to organize the group into “more than the sum of its
parts”. Doing so may be difficult because it requires

� This work was supported by the National Science Founda-
tion under Grant No. EIA0088081 and by ARO ODDR&E
MURI01 Grant No. DAAD19-01-1-0465, (Center for Com-
municating Networked Control Systems, through Boston
University).∗ Corresponding author. Tel: +1-301-405-5283, Fax: +1-
301-314-9477.

Email addresses: cshao@glue.umd.edu (Cheng Shao),
hristu@umd.edu (Dimitrios Hristu-Varsakelis).

decomposing a desired group behavior into individual
behaviors. The results however, can be spectacular, as
is often demonstrated by biological collectives. For ex-
ample, a school of fish can coordinate their movement in
a tight formation and respond almost as fast as a single
organism to evade encountering dangers; worker honey
bees share information by “dancing” and distribute
themselves among nectar sources in accordance with
the profitability of each source; ants are known to uti-
lize pheromone secretions for recruiting nest-mates and
for optimizing their foraging trails [4]. Observations of
such activities in nature have already seeded a variety
of research, from modeling of animal group behaviors
[4,2,15,9], to distributed collective covering and search-
ing [16,12], cooperative estimation [13,10], cooperative
robotic teams [6,17,11] and biologically-motivated opti-
mization [5,3].

A particularly interesting example of cooperation in nat-
ural animal aggregates has to do with the foraging activ-
ity of ant colonies. Ants recruit their co-workers to con-
vey food back to the nest when they find it. Finding an
efficient (short) path between the nest and food source
appears to be too complicated for individual ants to ac-
complish, considering their limited cognition and size
relatively to the obstacles in the environment, including
stones, sticks and crevices. Nonetheless, a colony of ants
exhibit a high degree of competence in such tasks [4].

Several models have been proposed in the attempt to
capture the organizing principle by which ants find
shortest paths when foraging. For example, [4] described
a model based on the use of pheromonal secretions that
help ants choose trails. Briefly, pheromonal secretions
are laid along the paths by ants to recruit nestmates
and to indicate the frequency of use for that path. In-
spired by that model, [16] developed robust adaptive
algorithms to perform tasks requiring the traversal of
an unknown region, such as cleaning the floor of an
unmapped building; [5] introduced a search methodol-
ogy based on the “distributed autocatalytic process”
to solve a classical optimization problem, the traveling
salesman problem.

A particularly simple – but elegant – ant colony orga-
nizing rule was presented in [2], where it was shown that
ants that “pursued” one another on R

2 (each pointing
its velocity vector towards a predecessor) had the ef-
fect of producing progressively “straighter” trails. That
idea was later extended to path optimization problems
involving kinematic vehicles in non-Euclidean environ-
ments [7,8].

Although local pursuit was inspired from observations of
ant colonies and applied to other engineered collectives,
the last works in [2,7] dealt exclusively with the “discov-
ery” of geodesics, meaning that the autonomous system-
members of the group had simple dynamics (ẋ = u) with
no drift terms. In [8], it was shown that the earlier work
could be generalized to a much broader class of optimal
control problems, and collectives whose members have
non-trivial dynamics. The proposed algorithm, termed
“local pursuit” (to use the term coined in [2]), guides
members of a group toward the solution of an optimal
control problem. However, the algorithms presented in
[8] were restricted to problems with fixed final time and
fixed final states. This report explores a modified version
of local pursuit for solving a broader and more interest-
ing class of optimal control problems with free final time
and partially-constrained final states.

Under our proposed control strategy, members of the col-
lective do not need a global map of their environment or
even an agreed-upon common coordinate system. Thus,
powerful sensing and mass information exchanging are
not needed, neither is the computation over “long” dis-
tances. This makes the proposed algorithms most use-
ful in trajectory optimization problems which are easier
to solve when boundary conditions are “close” to one
another (because of, for example, the members’ compu-
tational or sensing limitations), with the term “close”
taken to include not only geographical separation but
also distance on the manifold on which copies of a dy-
namical system evolve.

The remainder of this report is organized as follows: Sec-
tion 2 describes the optimal control problems to be ad-

dressed and proposes an iterative algorithm that is ap-
propriate for a group of cooperating dynamical systems.
Section 3 discusses the main results concerning the per-
formance of the proposed algorithm. Section 4 presents
a series of simulations and laboratory experiments that
illustrate our approach.

2 A bio-inspired algorithm for optimal control

We are interested in the solution of optimal control prob-
lems using a group of cooperating “agents”. The term
“agent” will refer to a member of a group of dynamical
systems, each taken to be a copy of:

ẋk = f(xk, uk), xk(t) ∈ R
n
, uk(t) ∈ Ω ⊂ R

m (1)

for k = 0, 1, 2 Physically, each copy of (1) could stand
for a robot, UAV or other autonomous system.

2.1 Problem Statement and Notation

The problem under consideration is:

Problem 1 Find a trajectory x∗(t), a final time Γ∗ > 0
and a final state x∗(Γ∗) that minimize

J(x, ẋ, t0) =
∫ t0+Γ

t0

g(x, ẋ)dt + F (x(t0 + Γ)) (2)

subject to the constraints x(t0) = x0 and Q(x(t0 +Γ)) =
0,

where it is assumed that g(x(t), ẋ(t)) ≥ 0, F (x(t0 +
Γ)) ≥ 0 and that Q(·) is an algebraic function of the
state.

Definition 1 Given the final state constraint Q(x) = 0,
the constraint set of x is

SQ � {x|Q(x) = 0}.

The function F (x) in (2) will be taken to be of the form:

G(x) =

{
F (x) if x ∈ SQ

0 if x /∈ SQ

with F (x) ≥ 0,∀x ∈ SQ. Problem 1 involves optimal
control with free final time and partially-constrained fi-
nal state. Fixed final state problems, where SQ is a sin-
gle state [14,8], are special cases of what are considered
here.

For any pair of fixed states a, b ∈ D ⊂ R
n, let x∗(t)

denote the optimal trajectory from a to b with free final

2

time (minimizing J with respect to x and Γ only). The
corresponding optimal final time is Γ∗(a, b). The cost of
following x∗ is denoted as:

η(a, b, t0) �
∫ t0+Γ∗

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + Γ∗))

= min
x,Γ

J(x, ẋ, t0) (3)

subject to x(t0) = a, x(t0 + Γ) = b.

Now, let x∗(t) be the optimal trajectory from an initial
state a to the constraint set SQ, and let Γ∗

Q(a, SQ) be
the corresponding optimal final time from a to SQ. The
cost of following x∗ is denoted by

ηQ(a, t0) �
∫ t0+Γ∗

Q

t0

g(x∗, ẋ∗)dt + G(x∗(t0 + Γ∗
Q))

= min
x,ΓQ

J(x, ẋ, t0) (4)

subject to x(t0) = a,Q(x(t0 + ΓQ)) = 0.

The cost of following a generic trajectory x(t) of (1)
during [t0, t0 + σ) is denoted by:

C(x, t0, σ) �
∫ t0+σ

t0

g(x, ẋ)dt + G(x(t0 + σ)) (5)

The following facts can be derived easily from the prop-
erties of optimal trajectories and will be helpful in the
sequel:

Fact 2 Let η, ηQ, C as defined in (3),(4),(5), and let
xk(t) be a generic trajectory of (1). Then, the following
hold:

(1) η(a, b, t0) ≤ C(xk, t0,Γ) for any xk(·)
with xk(t0) = a, xk(t0 + Γ) = b.

(2) η(a, c, t0) ≤ η(a, b, t0) + η(b, c, t0 + σ)
with σ = Γ∗(a, b).

(3) ηQ(a, t0) ≤ η(a, b, t0) for any b ∈ SQ.

2.2 Algorithm

Assume that there is available an initial feasible (but
suboptimal) control/trajectory pair (ufeas(t), xfeas(t))
for (1), obtained through a combination of a-priori
knowledge about the problem and/or random explo-
ration. Following the idea in [2,8], the agents are sched-
uled to leave the initial state x0 sequentially and pursue
one another towards the set SQ, in a way which will be
made precise shortly. The sequence is initiated with the
first agent following xfeas to reach a point in SQ. Each
subsequent agent will attempt to intercept its prede-
cessor – along optimal trajectories defined by (3) – if
the predecessor has not reached its final state in SQ. If

the predecessor has already reached the constraint set
SQ, then the pursuer ignores the preceding agent and
instead evolves along the optimal trajectory defined by
(4). The precise rules that govern the movement of each
agent are:

Algorithm 1 (Modified Continuous Local Pursuit):
Identify the starting state x0 on D and the constraint
set SQ. Let x0(t) (t ∈ [0, T0]) be an initial trajectory
satisfying (1) with x0(0) = x0, Q(x0(T0)) = 0. Choose
0 < ∆ ≤ T0.

(1) For k = 1, 2, 3 . . ., let tk = k∆ be the starting time of
kth agent. Let uk(t) = 0, xk(t) = x0 for 0 ≤ t ≤ tk.

(2) For all t ≥ tk, calculate u∗
t (τ) for all t ∈ [tk, tk +

Tk] such that f(x̂k(τ), u∗
t (τ)) = ˙̂xt(τ), and x̂t(τ)

achieves{
η(xk(t), xk−1(t), t), if xk−1(t) /∈ SQ

ηQ(xk(t), t), if xk−1(t) ∈ SQ

where τ ∈ [t, t+Γ∗(xk(t), xk−1(t))] if xk−1(t) /∈ SQ

or τ ∈ [t, t + Γ∗
Q(xk(t), SQ)] if xk−1(t) ∈ SQ

(3) Apply uk(t) = u∗
t (0) to the kth agent.

(4) Repeat from step 2, until the kth agent reaches SQ.

When discussing pairs of agents during pursuit, the (k−
1)th agent is designated as the “leader” and the kth agent
as the “follower”. As Step 2 of the algorithm indicates,
there are two types of follower movements, “catching up”
and “free running”, depending on whether the leader
has reached the final constraint set SQ. The former type
lets agents “learn” from their leaders, while the “free
running” stage enables them to find the optimal final
state within SQ once they are close enough to that set.
Both stages will be essential in order for the group to
solve Problem 1.

Note that modified continuous local pursuit (mCLP) re-
quires each follower to continuously update its move-
ment (via sensing and computing) to catch up with its
leader during the pursuit process. Continuous pursuit
may imply a significant computational burden for each
agent, especially in cases where the optimal trajectories
“linking” follower and leader cannot be written down in
closed form. For instances of Problem 1 where for each
follower the optimal time to reach the leader is lower
bounded for all time, then it is possible to alter the pre-
vious algorithm so that each agent only performs a finite
number of updating as it evolves from x0 to SQ. This
is done by defining a modified “sampled local pursuit”
policy, similar to that used in [8] for fixed final state
problems:

Algorithm 2 (Sampled Local Pursuit): Identify the
starting state x0 on D and the constraint set SQ. Let
x0(t), t ∈ [0, T0] be an initial trajectory satisfying (1)
with x0(0) = x0, Q(x0(T0)) = 0. Choose the pursuit
interval ∆ such that 0 < ∆ ≤ T0.

3

(1) For k = 1, 2, 3 . . ., let tk = k∆ be the starting time
of the kth agent, i.e. uk(t) = 0, xk(t) = x0 for
0 ≤ t ≤ tk.

(2) Choose the updating interval δi < min(∆,Γ∗
i−1),

where Γ∗
i−1 is the optimal final time of the last up-

date defined by Eq. (3) or (4), and denote Γ∗
−1 =

∆ for convenience. When tik = ti−1
k + δi+1, t

0
k =

tk, i = 0, 1, 2, 3, . . ., calculate the control u∗
t (τ) that

achieves (subj. to (1)):{
η(xk(t), xk−1(t), t), if xk−1(t) /∈ SQ

ηQ(xk(t), t), if xk−1(t) ∈ SQ

where τ ∈ [t, t+Γ∗(xk(t), xk−1(t))] if xk−1(t) /∈ SQ

or τ ∈ [t, t + Γ∗
Q(xk(t), SQ)] if xk−1(t) ∈ SQ

(3) Apply uk(t) = u∗
ti
k

(t − tik) to the kth agent for t ∈
[tik, ti+1

k).
(4) Repeat from step 2 until the kth agent reaches SQ.

Under modified sampled local pursuit (mSLP) each
agent executes a finite number of “updates” of its tra-
jectory, once every δ < ∆ time units. mSLP’s reduced
computational demands make it attractive in cases
where the complexity of the agents’ dynamics as well as
that of the environment they evolve in make necessitate
the use of numerical methods for finding optimal tra-
jectories. In fact, the sampled version of local pursuit
algorithm can itself be useful as a numerical method
for computing optimal controls. A full analysis of local
pursuit in that light is currently under way.

In the algorithms defined above, we assume that each
follower does not intercept its leader. If an interception
does occur, the follower will “join” its leader by repeat-
ing the leader’s trajectory after the time of interception.
Because the initial agent travels along its trajectory for
T0 units of time and the pursuit interval ∆ is finite, there
will be a finite number of such events whose existence
will not affect the results discussed below.

3 Main Results

In this section we explore the behavior of the group (1)
under continuous local pursuit (mCLP). Although we
will not do so here, similar results can be derived for
sampled local pursuit (mCLP), using [8] as a starting
point.

mCLP defines an ordered sequence of trajectories
{xk(t)}. This section will first investigate the conver-
gence of the trajectories’ cost, and then will show that
the trajectories themselves converge to a local optimum.
It will be convenient to distinguish between the planned
trajectory, denoted by x̂(t), that a follower computes
at every point in time in order to reach its leader, and
the realized trajectory, denoted by x(t), along which the
follower actually evolves.

Lemma 1 Consider a leader-follower pair evolving un-
der mCLP with a pursuit interval ∆. Let the leader’s
trajectory be xk−1(t) (t ∈ [tk−1, tk−1 + Tk−1]) and fix
λ ∈ [0, Tk−1). Suppose the follower updates its trajectory
only once during [tk, tk + Tk] as described next:

• If λ < Tk−1 −∆, the follower moves along the optimal
trajectory (in the sense of (3)) joining xk(tk + λ) and
xk−1(tk + λ) with optimal final time Γ = Γ∗(xk(tk +
λ), xk−1(tk + λ)). During other times, the follower
replicates the leader’s trajectory, i.e.

{
xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ]

xk(t) = xk−1(t − Γ) t ∈ [tk + λ + Γ, tk + Tk]

• If λ ≥ Tk−1−∆, the follower evolves along the optimal
trajectory from xk(tk + λ) to the constraint set SQ (in
the sense of (4)). Similarly, during other times

xk(t) = xk−1(t − ∆) t ∈ [tk, tk + λ]

Then the cost along the follower’s trajectory will be no
greater than the leader’s.

PROOF. First, choose λ < Tk−1 −∆. Starting at time
tk + λ and during t ∈ [tk + λ, tk + λ + Γ], the follower
moves on the locally optimal trajectory xk(t) (see Fig.
1). The cost along xk is

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

Xk(tk)Xk-1(tk-1)=

Xk(tk+)

Xk(tk+ +)

SQ

Xk(tk+Tk)

Xk-1

Fig. 1. Illustration of the trajectory obtained by a single
update when λ < Tk−1 − ∆.

C(xk, tk, Tk) =
= C(xk, tk, λ) + C(xk, tk + λ + Γ, Tk − λ − Γ)

+η(xk(tk + λ), xk−1(tk + λ), tk + λ)
≤C(xk−1, tk−1, λ) + C(xk−1, tk−1 + λ,∆)

+C(xk−1, tk−1 + λ + ∆, Tk−1 − λ − ∆)
= C(xk−1, tk−1, Tk−1) (6)

where Γ = Γ∗(xk(tk + λ), xk−1(tk + λ)).

4

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

Xk(tk)Xk-1(tk-1)=

Xk(tk+) Xk(tk+Tk)

SQ

Xk(tk-1+Tk-1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Fig. 2. Illustration of the trajectory obtained by a single
update when λ ≥ Tk−1 − ∆.

If λ ≥ Tk−1 − ∆ (see Fig. 2), the cost along xk is

C(xk, tk, Tk) =
= C(xk, tk, λ) + ηQ(xk(tk + λ), tk + λ)
≤C(xk−1, tk−1, λ) + C(xk−1, tk−1 + λ, Tk−1 − λ)
= C(xk−1, tk−1, Tk−1)

Therefore the cost along the follower’s trajectory is no
greater than the leader’s. �

Now, the cost of the iterative trajectories can be shown
to converge under mCLP:

Lemma 2 (Convergence of Cost) If the agents (1)
evolve under mCLP, the cost of the iterated trajectories
converges.

PROOF. Let Ck−1 be the cost along the leader’s tra-
jectory xk−1(t) (t ∈ [tk−1, tk−1 + Tk−1]). Define a tra-
jectory sequence xi

k(t) (t ∈ [tk, tk + T i
k]), i = 0, 1, 2 . . . ,

whose corresponding costs and final times are Ci
k and

T i
k, as follows: let x0

k(t) = xk−1(t) (the trajectory of a
“leader”) and let xi

k (i > 0) be the trajectory of an agent
that pursues xi−1

k by performing only a single trajectory
update, as described in Lemma 1, with λ = (i−1)δ, δ > 0
(see Fig. 3).

Xk
1 2

3 4

Xk

Xk Xk

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

SQ SQ

xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

SQ
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

SQ

xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

Fig. 3. Illustration of the trajectory sequence xi
k(t). Each tra-

jectory is obtained by a single update upon its predecessor.

From Lemma 1, the cost of each follower’s trajectory
will be no greater than the leader’s. Also, the sequence

Ci
k is bounded below for fixed k. Thus, Ci

k ≤ Ci−1
k and

limk→∞ Ci
k = C∞

k exists for each k. Consequently,

C∞
k ≤ C0

k = Ck−1

Now, take δ = Tk−1/i, so that δ → 0 as i → ∞. At
the limit, the trajectory x∞

k (t) is precisely what would
be obtained by an agent that pursues its leader xk−1,
using mCLP. Hence, the follower’s cost is Ck = C∞

k ≤
Ck−1. Because the sequence {Ck} is non-increasing and
bounded below (there exists a minimum for (2)), it must
converge to a limit. �

To proceed to the main theorem, we will require that the
optimal cost of (2) changes “little” for small changes to
the endpoints of a trajectory:

Condition 1 Assume for a generic trajectory x1(t)
there exists an ε > 0 such that for all a, b1, b2 ∈ D and all
Ω > 0, there exists a trajectory x2(t) such that the cost
C(x1, 0, T) (x1(0) = a, x1(T) = b1) from a to b1 and cost
C(x2, 0, T) (x2(0) = a, x2(T) = b2) from a to b2 satisfy
‖b1 − b2‖∞ < ε ⇒ ‖C(x1, 0, T) − C(x2, 0, T)‖∞ < LΩ

for some constant L, independent of Ω.

Then the next lemma holds:

Lemma 3 Let x∗(t) be a trajectory of (1) such that: i)
x∗(t) (t ∈ [0, t1 + ∆1]) is optimal (in the sense of (3))
from x∗(0) to x∗(t1 + ∆1), and ii) x∗(t) (t ∈ [t1, T ∗]) is
optimal (in the sense of (4)) from x∗(t1) to the constraint
set SQ. Assume Condition 1 is satisfied and 0 < t1 <
t1 + ∆1 < T ∗. Then the trajectory x∗(t) (t ∈ [0, T ∗]) is
a local minimum of (4) from x∗(0) to SQ.

PROOF. Choose 0 < ∆ ≤ ∆1. From the principle of
optimality, x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T ∗])
are each locally optimal with respect to their corre-
sponding end points. Suppose ‖x∗(t1 + ∆) − s‖∞ ≥ ε1

for any s ∈ SQ and that x∗(t) (t ∈ [0, T ∗]) is not
a local minimum. There must exist ε < min(ε, ε1/2)
(where ε is defined in Condition 1) and another opti-
mum x(t) ∈ D × [0, T] satisfying ‖x(t) − x∗(t)‖∞ < ε
and C(x(t), 0, T) < C(x∗(t), 0, T ∗).

Notice that ‖x(t1 + ∆) − s‖∞ ≥ ε for any s ∈ SQ. Con-
struct two trajectories y1(t), y2(t) (t ∈ [t1, t1 + ∆]) that
connect x(t) and x∗(t) (see Fig. 4) and satisfy Condi-
tion 1 (with x∗ or x playing the role of x1, and y1 or
y2 standing in for x2). In particular, let y1, y2 be such
that x∗(t1) = y2(t1), x∗(t1 + ∆) = y1(t1 + ∆), x(t1) =
y1(t1), x(t1 +∆) = y2(t1 +∆). Now ,Condition 1 implies
that

C(y1(t), t1,∆) < C(x(t), t1,∆) + L∆
C(y2(t), t1,∆) < C(x∗(t), t1,∆) + L∆ (7)

5

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

X*(t)

X(t)

X0

X*(t1)

X*(t1+∆)
X(t1)

X(t1+∆)

Y2(t)

Y1(t)

SQ

Fig. 4. Illustrating the proof of Lemma 3: “overlapping” op-
timal trajectories form a locally optimal trajectory.

Because x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T ∗])
are each locally optimal, the following holds:

C(x∗(t), 0, t1) + C(x∗(t), t1,∆) (8)
< C(x(t), 0, t1) + C(y1(t), t1,∆), and

C(x∗(t), t1,∆) + C(x∗(t), t1 + ∆, T ∗ − t1 − ∆)
< C(x(t), t1 + ∆, T − t1 − ∆) + C(y2(t), t1,∆) (9)

Combining (7) with (8,9) leads to

C(x∗(t), 0, T) < C(x(t), 0, T) + 2L∆ (10)

The cost C(x(t), 0, T) is apparently less than C(x∗(t), 0, T);
but if ∆ is chosen so that

0 < ∆ <
C(x∗(t), 0, T) − C(x(t), 0, T)

2L
then (10) cannot hold. This is a contradiction, because
∆ could be chosen arbitrarily small. It follows that
x∗(t) (t ∈ [0, T ∗]) must be a local minimum. �

Assume that the locally optimal trajectory from the fol-
lower to the leader (or to SQ) is unique at all times. This
assumption is generally satisfied if pursuit is restricted
to take place within a “small” region (setting ∆ small),
i.e. agents follow “close” to one another. Then, conver-
gence of the trajectories’ cost also implies convergence
of the trajectories themselves:

Lemma 4 If at all times during mCLP, the locally op-
timal trajectory from follower to leader (or to SQ) is
unique, then mCLP converges to a limiting trajectory
x∞(t).

PROOF. Suppose that the trajectories’ cost converges
but that there exist more than one limiting trajectory.
Let x1(t) (t ∈ [0, T1]) and x2(t) (t ∈ [0, T2]) be two such
possibilities. Let t1 ∈ [0, T1] be the earliest time that

x1(t) differs from x2(t). From Lemma 2, x1 and x2 must
have the same cost, otherwise convergence of the cost is
contradicted. Suppose that a leader xk−1(t) travels along

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxx

X1(t)

X2(t)
X1(t1) SQ

X1(t1+∆)

X2(t1+h)

X1(T1)

X2(T2)

X2(t1+nh)

Fig. 5. Illustrating the proof of Lemma 4: pursuit between
agents moving on two supposed “limiting” equal-cost tra-
jectories, leads to the conclusion that the cost along the fol-
lower’s trajectory is less than that along the leader’s.

x1(t), while a follower xk(t) travels along x2(t). Choose
h > 0 small, and that a series of sampled updates occur
at t1 + ih (i = 1, 2 . . . , n = (T1 − t1 − ∆)/h), as Fig. 5
indicates.

Consider the update occurring at t1, the follower moves
on x2(t), t ∈ [t1, t1+h) after this update. This fact means
either that the trajectory passing x2(t), t ∈ [t1, t1 + h)
and the optimal trajectory from x2(t1 +h) to x1(t1 +∆)
(as indicated by the left dashed line in Fig. 5) has less
cost than x1(t), t ∈ [t1, t1 + ∆), or it has the same cost
with x1(t), t ∈ [t1, t1 + ∆). The latter is contradict to
the assumption that there only exists a unique locally
optimal trajectory from follower to leader at any time.
Therefore the locally optimal trajectory that the follower
actually calculated at t1 has the cost of C(x2, t1, h) +
η(x2(t1 + h), x1(t1 + ∆), t1 + h), and

C(x2, t1, h) + η(x2(t1 + h), x1(t1 + ∆), t1 + h)
< C(x1, t1,∆) (11)

Similarly, investigate the update occurring at t1 =
ih(i = 2, 3, . . . , n), and we obtained

C(x2, t1 + h, h)
+η(x2(t1 + 2h), x1(t1 + ∆ + h), t1 + 2h)

< η(x2(t1 + h), x1(t1 + ∆), t1 + h)
+C(x1, t1 + ∆, h) (12)

.

C(x2, t1 + (n − 1)h)
+η(x2(t1 + nh), x1(T1), t1 + nh)

< η(x2(t1 + (n − 1)h), x1(T1 − h), t1 + (n − 1)h)
+C(x1, T1 − h, h) (13)

And at the last update step, the follower will choose the

6

locally optimal trajectory from itself to SQ:

C(x2, t1 + nh, T2 − t1 − nh)
< η(x2(t1 + nh), x1(T1), t1 + nh) (14)

Notice the inequality does not depends on the size of h.
No matter how small h is, it can always be concluded
from (11)∼(14) that

C(x2, t1, T2 − t1) < C(x1, t1, T1 − t1) (15)

If we let h → 0, the above sampled process will approach
the continuous local pursuit. However, the result of (15)
does not change with the decrease of h, therefore the
cost along x2(t) must be less than that for x1(t) under
mCLP, which contradicts the convergence of the cost
under mCLP. �

Lemma 5 Along the limiting trajectory produced under
mCLP, the planned trajectories x̂k(t) and realized trajec-
tories xk(t) overlap, i.e. x̂k(t) = xk(t). Furthermore, if
the locally optimal trajectories obtained at every updat-
ing time are smooth, then the limiting trajectory is also
smooth.

PROOF. Suppose that a leader, xk−1 evolves along the
limiting trajectory x∞(t). Lemma 4 then implies that
xk−1(t) = xk(t + ∆) for ∀t ∈ [tk, tk + Tk].

Xk(t)

t1

t2

t1+ 1

t2+ 2Xt1(t)

t1+ 1

Fig. 6. Differences between the planned and realized trajecto-
ries contradict the convergence of trajectories under mCLP.

Suppose that with the leader at xk−1(t1 + Γ(t1)), where
Γ(t1) is the best final time for update at t1, and follower
at xk(t1), the planned trajectory x̂t1(t) (t ∈ [t1, t1 +
Γ̂(t1)) obtained at t1 differs from xk(t) (t ∈ [t1, t1+Γ(t1))
starting at some time t2 ≥ t1. Furthermore, let x̂t1(t1 +
Γ̂(t1)) = x(t1 + Γ(t1)). Because the planned trajectory
x̂t1(t) is unique (by assumption) and optimal,

C(x̂t1 , t2, Γ̂(t1) − (t2 − t1)) < C(xk, t2,Γ(t1) − (t2 − t1))

Construct the trajectory

x̄(t) =

{
x̂t1(t) t ∈ [t2, t1 + Γ̂(t1))

xk(t − Γ̂(t1) + Γ(t1)) t ∈ [t1 + Γ̂(t1), t2 + Γ(t2)]

Clearly, x̄ has lower cost than xk(t) (t ∈ [t2, t2 + Γ(t2)])
(See Fig. 6). Thus, under mCLP, the follower would have
taken x̄ (or another trajectory with even lower cost) over
xk(t) (t ∈ [t2, t2 + Γ(t2)]). This contradicts the conver-
gence to a limiting trajectory. The same argument can
be applied at any other updating time, so that it can be
concluded that x̂(t) = xk(t) (t ∈ [0, Tk]).

Recall that xk(t) is smooth for t ∈ [t1, t1 + Γ(t1)], be-
cause the locally optimal trajectories linking follower
and leader are smooth by assumption. Similarly, xk(t) is
smooth for t ∈ [t2, t2+Γ(t2)] for any t1 < t2 < t1+Γ(t1).
Therefore, xk(t)(t ∈ [t1, t2+Γ(t2)]) is smooth. Repeated
applications of this argument lead to the conclusion that
the entire trajectory xk(t) (t ∈ [0, Tk]) is smooth. �

The next theorem is an immediate consequence of Lem-
mas 1 ∼ 5:

Theorem 1 Suppose that the group of (1) evolves under
mCLP and that at all times t, the locally optimal trajec-
tories from follower to leader are unique. Then, the lim-
iting trajectory is unique and locally optimal. It is also
smooth, if the locally optimal trajectories calculated at
every updating time are smooth.

PROOF. From Lemma 4, the limiting trajectory is
unique. It follows that xk−1(t−∆) = xk(t) if xk−1(t) =
x∞(t − tk−1). Choose δ1, δ2 such that 0 < δ1 < δ2 < Γ
for all optimal final times Γ of the planned trajecto-
ries x̂k generated during mCLP. The limiting trajec-
tory x∞ is piecewise smooth and locally optimal for
t ∈ [tk + iδ1, tk + iδ1 + δ2], i = 0, 1, 2 . . . because it coin-
cides with the planned trajectories x̂k(t). From Lemma
3 – in this case SQ is a single point – it can be con-
cluded that xk(t) (t ∈ [tk, tk + δ1 + δ2]) is optimal be-
cause it is the composition of two overlapping locally op-
timal trajectories, xk(t) (t ∈ [tk, tk + δ2]) and xk(t) (t ∈
[tk + δ1, tk + δ1 + δ2]). ¿From successive applications of
this argument (i = 2, 3, . . .), we conclude that x∞(t) is
locally optimal. Smoothness of x∞ is proved via a simi-
lar “piece by piece” argument. �

3.1 Remarks

Local pursuit is a cooperative, decentralized algorithm
for learning optimal controls/trajectories, starting from
a feasible solution. Each agent is only required to calcu-
late optimal trajectories from its own state to that of its
nearby leader. Because agents are separated by ∆ time
units as they leave x0, each agent relies on local informa-
tion only in order to follow its predecessor, and requires
no knowledge of the global geometry. Therefore there is
no need for agents to exchange or “fuse” local maps that

7

they obtain individually. Agents do not need to commu-
nicate their choice of coordinate systems as they evolve,
nor do they need to know the coordinates of xf . While
it is possible that a group of agents could disperse and
construct a global map from local information, such an
approach might require significantly more computation
and communication than local pursuit. The latter solves
the optimal control problem in many “short pieces”,
which makes it no need to compute the optimum over
the whole environment. Thus local pursuit is appropri-
ate for systems with short-range sensors (for example,
in the case of a swarm of robots exploring unknown ter-
rain), and optimal control problems which are easier to
solve over “short” distances.

The local pursuit algorithms assumed a countable infin-
ity of agents; of course, such a collection cannot be re-
alized. It is however possible to achieve the same results
with a finite number of agents that apply local pursuit
to reach the final constraint set SQ from x0, then return
to x0 along the obtained path. The required modifica-
tions are straightforward but will not be discussed here
as they are beyond the scope of this report. An experi-
ment that uses this technique is detailed in [8]. Finally,
local pursuit is not guaranteed to converge to the global
optimum. The choice of agent separation ∆ can affect
whether the limiting trajectory is a local or a global opti-
mum. Some interesting cases involving spaces with holes
or obstacles are discussed in [8,14].

4 Simulations and Experiments

In this section, we describe a series of simulations and
an experiment desinged to illustrate the performance of
local pursuit.

4.1 A trail optimization problem with free final states

Consider the problem of finding shortest paths in an en-
vironment consisting of a plane with two right cones,
whose top view was shown in Fig. 7. The radii and
heights of the cone were 800 and 1000 units of length,
respectively. Each object (the plane and each cone) was
parametrized with its own set of coordinate functions.
The agents were governed by ẋk = uk, ‖uk‖ = 1 and
were required to travel from x0 = (3500, 0, 0) to the sec-
ond cone.

Fig. 7 shows the iterated trajectories generated by a col-
lection of systems implementing the mCLP policy with
T0 = 3499, ∆ = 0.2T0. For the computation of the opti-
mal trajectory, each agent had to solve its own optimal
control problem which was simpler than the “global”
problem, partly due to the fact that the optimal tra-
jectory crosses multiple coordinate patches as it crosses
from the plane to the cones and vise versa. When leader
and follower were both on the plane or on the same cone,

the computation of optimal trajectories was straightfor-
ward. In other cases, agents had to compute optimal tra-
jectories that crossed between at most two coordinate
patches (plane-to-cone or cone-to-plane). On the other
hand, computing the optimal trajectory at once would
require searching over a four-parameter family of curves
(there are a total of four “crossings” between coordinate
sets). A thorough accounting of the computational re-
quirements and numerical performance of local pursuit
will be forthcoming.

Fig. 7. Continuous local pursuit in a complex environment.
The initial trajectory (along the borders of the cones) is eas-
ily described but far away from optimal. The locally optimal
trajectories were easier to compute than the global optimum
because of the limited pursuit distance (∆ = 0.2T0). The
iterated trajectories converged to the optimum.

4.2 Minimum-time control with limited acceleration
and speed

Next, consider the minimum-time control of the second-
order system

ẍ = u; s.t. |u| ≤ 30, |ẋ| ≤ 8

We want to minimize J(x, ẋ, 0) = T , with the bound-
ary conditions ẋ(0) = ẋ(T) = 0, x(0) = 0 and x(T)
fixed (in this simulation, x(T) is determined by the in-
put to the first agent). Here the constraint set SQ is a
single point in the state space. The optimal control pol-
icy is similar to the well-known ‘bang-bang” control: the
control u switches at most once between 30 and −30,
and u = 0 when the maximum or minimum speed ẋ
has been reached. The initial, suboptimal input (Agent
1 in Fig. 8), alternated between the maximum and min-
imum available acceleration. When using mCLP with
∆ = 1.3sec, the third agent’s trajectory was optimal,

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 1

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 2

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12
Agent 3

Time (sec)

Acceleration/16

Speed

Position

Fig. 8. Iterative trajectories for minimum control with lim-
ited acceleration and speed. The simulated control loop ran
at a frequency of 2000Hz so that the control policy could
be regarded as approximately mCLP. The pursuit interval
was ∆ = 1.3. Units for acceleration, velocity and position
are Rad/s2, Rad/s, Rad, respectively.

see Fig. 8 for illustration. Notice that after t > 2.7sec
the second agent intercepted the first and subsequently
moved along the same trajectory x1. It is also interesting
to note that in this case, optimality was achieved after
a finite number of iterations.

4.3 Experiment on minimum-time control with accel-
eration and speed constraints

Motor 1 Motor 2 Motor 3

Fig. 9. Applying local pursuit with a trio of motors to obtain
minimum-time control with limited acceleration and speed.

We implemented the example of Sec. 2.4 using a collec-
tion of three motors, shown in Fig. 9. Each motor was
equipped with position and speed sensors, which were
sampled by a PC-based controller at a rate of 2000Hz.
The goal was to rotate the motors to a fixed final po-
sition in minimum time. Motor acceleration and speed
were limited to 30rad/sec2 and 8rad/sec, respectively.

The input to the first motor was a rectangular pulse with
amplitude equal to the maximum acceleration (same as
in the simulation of Sec. 2.4). Each of the remaining two
motors tried to “catch up” with its predecessor by reach-
ing the predecessor’s state minimum time. The trajec-
tories of all three motors with ∆ = 1.3sec are shown in
Fig. 10. We see that the third motor evolved under es-
sentially optimal control, and the second motor “inter-
cepted” the first after t ≈ 2.3sec.

Because of unmodeled friction, the final position θ(T)
was less than the nominal value (see x(T) in the last sim-
ulation). Friction also caused the motors to decelerate
when a zero input was applied (once the motors reached
maximum speed). In turn, that deceleration caused the
mCLP policy to try and catch up by introducing a pos-
itive control input, resulting in chatter observed in the
velocity and acceleration curves of motors 2 and 3 in
Fig. 10.

5 Conclusions and ongoing work

This report explored a biologically-inspired coopera-
tive strategy (termed “Local Pursuit”) for solving a
class of optimal control problems with free final time

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 1

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 2

Time (sec)

Acceleration/16

Speed

Position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8

10
Motor 3

Time (sec)

Acceleration/16

Speed

Position

Fig. 10. Iterative trajectories of motors when applying local
pursuit to attain minimum-time control with limited accel-
eration and speed. The pursuit interval ∆ = 1.3. The third
motor evolved under essentially optimal control.

and partially-constrained final state. The proposed al-
gorithms generalizes previous models that mimic the
foraging behavior of ant colonies and allows a collective
to discover optimal controls, starting from an initial
suboptimal solution. Members of the collective are only
required to obtain local information on their environ-

ment and to calculate optimal trajectories to their
nearby neighbors. The local pursuit algorithm relies on
cooperation to perform a task which would be difficult
or impossible for a single system to perform, namely
solving an optimal control problem with limited infor-
mation (in terms of coordinate systems that describe
the environment or the coordinates of the final state)
and short-range sensing.

Although this work was inspired by a desire to explore
the limits of a simple-to-formulate, bio-inspired control
policy, mCLP and especially its “sampled” counterpart
could be interesting as numerical methods for computing
optimal controls. Work in that direction is ongoing.

References

[1] R.A. Brooks and A.M Flynn. Fast, cheap and out of control:
a robot invasion of the solar system. Journal of the British
Interplanetary Society, 42:478–485, 1989.

[2] A.M. Bruckstein. Why the ant trails look so straight and
nice. The Mathematical Intelligencer, 15(2):59–62, 1993.

[3] A.M. Bruckstein, C.L. Mallows, and I. A. Wagner.
Probabilistic pursuits on the grid. The American
Mathematical Monthly, 104(4):323–343, April 1997.

[4] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd,
G. Theraulaz, and E. Bonabeau. Self-Organization in
Biological Systems. Princeton University Press, Princeton,
New Jersey 08540, 2001.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. Ant systems:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man and Cybernetics, Part B,
26(1):29–41, 1996.

[6] R. Fierro, P. Song, A. Das, and V. Kumar. Cooperative
control of robot formation. In R. Murphey and P.M. Pardalos,
editors, Cooperative control and optimization, pages 73–93.
Kluwer Academic Publishers, 2002.

[7] D. Hristu-Varsakelis. Robot formations: Learning minimum-
length paths on uneven terrain. In Proceedings of the 8th
IEEE Mediterranean Conference on control and Automation,
2000.

[8] D. Hristu-Varsakelis and C. Shao. Biologically-inspired
optimal control: Learning from social insects. International
Journal of Control, 77(18):1545–66, Dec. 2004.

[9] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions on Automatic Control, 48(6), June 2003.

[10] R. Kurazume and S. Hirose. Study on cooperative positioning
system: optimum moving strategies for cps-iii. In Proceeding
of the 1998 IEEE International Conference in Robotics and
Automation, volume 4, pages 2896–2903, Leuven, Belgium,
May 1998.

[11] P. Ögren, E. Fiorelli, and N.E. Leonard. Formation with
a mission: Stable coordination of vehicle group maneuvers.
In Proceedings Fifteenth International Symposium on
Mathematical Theory of Networks and Systems, Notre Dame,
IL, August 2002.

[12] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu,
Y. Yang, M. Flint, and M. Baum. Cooperative control for
autonomous air vehicles. In R. Murphey and P.M. Pardalos,
editors, Cooperative control and optimization, pages 233–272.
Kluwer Academic Publishers, 2002.

10

[13] S.I. Roumeliotis and G.A. Bekey. Distributed multi-
robot localization. IEEE Transactions on Robotics and
Automation, 18(5):781–795, 2002.

[14] C. Shao and D. Hristu-Varsakelis. Biologically inspired
algorithms for optimal control. Technical Report TR2004-
29, Institute for Systems Research, University of Maryland,
College Park, MD 20742, 2004.

[15] T. Vicsek, A. Czirok, E.B. Jacob, I. Cohen, and O. Schochet.
Novel type of phase transitions in a system of self-driven
particles. Physical Review Letters, 75:1226–1229, 1995.

[16] I.A. Wagner, M. Lindenbaum, and A.M. Bruckstein.
Distributed covering by ant-robots using evaporating traces.
IEEE Transactions on Robotics and Automation, 15(5):918–
933, 1999.

[17] H. Yamaguchi and J.W. Burdick. Asymptotic stabilization
of multiple nonholonomic mobile robots forming group
formations. In Proceedings of IEEE International Conference
on Robotics and Automation, volume 4, pages 3573–3580,
1998.

11

